Quadratic Maps as Dynamical Systems on the P-adic Numbers

نویسنده

  • MONICA NEVINS
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p-adic Shearlets

The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the  $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.

متن کامل

p-adic discrete dynamical systems and their applications in physics and cognitive sciences

This review is devoted to dynamical systems in fields of p-adic numbers: origin of p-adic dynamics in p-adic theoretical physics (string theory, quantum mechanics and field theory, spin glasses), continuous dynamical systems and discrete dynamical systems. The main attention is paid to discrete dynamical systems iterations of maps in the field of p-adic numbers (or their algebraic extensions): ...

متن کامل

Markov chains for random dynamical systems on p-adic trees

We study Markovian and non-Markovian behaviour of stochastic processes generated by random dynamical systems on p-adic trees. In fact, such systems can be interpreted as stochastic neural networks operating on branches of the homogeneous p-adic tree (where p > 1 is a prime number). Key-Words: Random dynamical systems, p-adic numbers, Markovian property

متن کامل

$p$-adic Dual Shearlet Frames

We introduced the continuous and discrete $p$-adic shearlet systems. We restrict ourselves to a brief description of the $p$-adic theory and shearlets in real case. Using the group $G_p$ consist of all $p$-adic numbers that all of its elements have a square root, we defined the continuous $p$-adic shearlet system associated with $L^2left(Q_p^{2}right)$. The discrete $p$-adic shearlet frames for...

متن کامل

On Ergodic Behavior of P-adic Dynamical Systems *

Monomial mappings, x 7→ xn, are topologically transitive and ergodic with respect to Haar measure on the unit circle in the complex plane. In this paper we obtain an anologous result for monomial dynamical systems over p−adic numbers. The process is, however, not straightforward. The result will depend on the natural number n. Moreover, in the p−adic case we never have ergodicity on the unit ci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007